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ABSTRACT 

An important goal of a tidal theory is the improvement of nutational amplitude and of the 
parameters of the Earth’s elastic response. With this goal in mind, a theory of tidal oscilla- 
tions inside a rotating elliptical Earth is developed, with special emphasis on tides in the 
liquid core. The Molodensky and Kramer theory of the resonance effect, as caused by the 
proximity of the frequency of the free diurnal wobble of the liquid core to the frequency 
of K, astronomical tide, was amended to include the effect of the possible deviation of the 
liquid core from the state of neutral stability. Coupling effects between the toroidal and 
spheroidal oscillations, as caused by the Coriolis force, are taken into consideration. 
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BASIC NOTATIONS 

Basic unit vectors of a rotating system of coordinates with 
the origin and directions rigidly fixed relative to the “initial” 
(mean) position of the mantle 

I = i i + j j + k k  Idem factor 

r Position vector of the Earth particle in its “initial” (mean) 
state, Po 

P Initial density at Po 

A, /J 

S 

~ a m d  elastic parameters at p0 

Initial stress at Po 

P Hydrostatic pressure at Po 

P Density at the displaced point in the moment t 

R Position vector of the displaced point, P, at the moment t 

W Absolute acceleration of the displaced point, P, at the 
moment t 

u = R - r  Elastic displacement of Po at the moment t 

Spherical coordinates, where 8 is the colatitude and cp is the 
longitude 

e,, e, 9 ep Unit vectors along the coordinate lines in the spherical system 

S r  = eimp P,“ (cos e) Scalar surface spherical harmonic 

A 5 B 7 , “  Vectorial spherical harmonics 

4 ) A $  External product of two linear differential forms 
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T 

e = %(UV+VU) 

qio = ?h r - :(I - k k) - r 

V(r) = U + qio 

W 

a 

P 

Stress in the Earth as induced by the lunisolar tidal forces 

Total stress 

Strain dyadic (At a later stage, e designates the ellipticity.) 

Local vorticity, I X w = o X I = % (uV - VU) 

Constant of gravitation 

Initial force function of self-gravitation (per unit of mass) at 
Po (Force function of the centrifugal force is not included.) 

“Centrifugal” force function 

Total gravitational force function 

Force function of the tidal attraction 

Tidal variation in geopotential, $ = qi + W 

Instantaneous angular speed of rotation of the Earth 

Constant part of 

Effect of nutation in S2 

Ellipticity of the interior equipotential surface (considered 
as an ellipsoid of rotation) 

Mean radius of the interior equipotential surface 

Pekeris index of stability of the outer core 

V i i i  



ON THE TIDAL OSCILLATIONS OF THE 
LIQUID CORE OF THE EARTH 

Peter Musen 
Goddard Space Flight Center 

Greenbelt, Maryland 

INTRODUCTION 

From a parametrized model of the Earth, as obtained from seismic information, a model of 
the tides in the interior of the Earth can be determined. The understanding of the internal 
tidal processes is important from the astronomical and geophysical standpoints because they 
influence the amplitudes of nutation and the parameters of the Earth’s elastic response (Love 
numbers), as observed on the Earth’s surface. Thus, an important goal of a tidal theory is the 
improvement of the nutational amplitudes and of the Earth’s elastic response-pure, uncon- 
taminated by the effects of the free diurnal wobble of the liquid core. With this goal in mind, 
a theory of tidal oscillations inside a rotating elliptical Earth was developed, with emphasis 
on tides in the liquid core. It is planned to apply this theory to the actual computation of 
the tides, particularly in the outer core. 

The present work can be considered as an extension (or a modification) of tidal theories by 
Molodensky (References 1 and 2), Molodensky and Kramer (Reference 3), and Shen and 
Mansinha (Reference 4). 

Some of the final equations are identical to the final equations of Shen and Mansinha, and 
some are not. The differential equations for tidal amplitudes were deduced. Some of the 
equations by Shen and Mansinha clearly represent linear combinations of the equations for 
amplitudes. 

In the exposition the vectorial and dyadic symbolism is being used, partly to obtain the 
differential equations in a compact form and partly to clarify the kinematics of numerous 
couplings between the tides of different degrees, as well as between the spheroidal and 
toroidal tides. The basic equations include the effect of the Earth’s deviation from the 
hydrostatic equilibrium in the initial state and the influence of the vorticity on the stress 
tensor, making use of Biot’s (Reference 5) and Dahlen’s (Reference 6) formulations of the 
elasticity theory. 

Satellite observations indicate the existence of a small deviatory prestress. Biot’s and 
Dahlen’s works pave the way for its inclusion when it is considered opportune. 
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The tides and tidal forces were expanded into a series of complex vectorial harmonics, both 
spheroidal and toroidal (References 7 and 8). This expansion presents no numerical compli- 
cations because modern electronic machines are now able to handle functions of complex 
arguments without difficulty. Some relationships were also established between vectorial 
harmonics of different degrees. These relationships facilitate the expansion of the Coriolis 
force into a series of vectorial harmonics and, consequently, the formulations of the differ- 
ential equations for tides. Further, they eliminate the customary use of 3j-Wigner symbols, 
which are not convenient for this problem. As in the work of Shen and Mansinha (Reference 
4), the original Molodensky and Kramer equations (Reference 3) were amended by including 
the perturbative effects of the ellipticity of equipotential surfaces and the deviation of the 
liquid core from the neutral stability. 

The established equations indicate precisely when and why the terms that contain the 
ellipticity as a factor can be neglected. Although the influence of the ellipticity on the 
astronomical tides is relatively small, it affects the free diurnal wobble of the liquid core. 
It must also be taken into account in the transfer of the normal component from the liquid 
core to the mantle through the ellispoidal core-mantle interface. The period of free diurnal 
oscillations of the liquid core is only 3 minutes short of the period of the Earth’s rotation 
(Reference 4). This proximity of periods causes a strong resonance of the free diurnal oscilla- 
tions of the liquid core with the diurnal astronomical tide K, and, to a lesser degree, with 
the diurnal astronomical tide, PI (References 9 and 10). The influence of this strong reso- 
nance contaminates the observed diurnal Love numbers. The removal of this contamination 
is an important geophysical problem because it helps to obtain the Earth’s elastic response 
pure to the astronomical tidal forces only. 

The resonance effect is one possible cause of the dependence of diurnal Love numbers on 
frequency. Observations with horizontal pendulums and gravimeters lead to different 
values of Love numbers for different diurnal tidal constituents (Reference 10). Recent 
values of Love numbers for the “whole Earth,” as deduced from laser observations of 
GEOS-3, also display a marked dependence on frequency (References 1 1 and 12). Haardeng- 
Pedersen’s computations (Reference 13), based on the model of a rotating Earth with the 
effects of nutation and diurnal wobble of the liquid core excluded, also show the dependence 
of Love and Shida numbers on frequency. 

Poincar; found the existence of the free diurnal wobble of the elliptical liquid core (Reference 
14), and Jeffreys discussed the geophysical implications of it (Reference 15). In their theory 
of the wobble, Molodensky and k a m e r  (Reference 3) assumed the neutral stability of the 
outer core and the validity of the Adarfis-Williamson condition (Reference 16). Shen and 
Mansinha, Haardeng-Pedersen, Pekeris and Accad, and Crossley (References 4, 13, 17, and 
18) recently studied the dynamical consequences of the deviation of the liquid core from 
the neutral stability. 

In the present work, Molodensky and Kramer’s theory of resonance (Reference 3) was 
amended by including the perturbative effects proportional to the index of stability of the 
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liquid core. Perturbations in the geopotential and gravity are controlled by the Poisson 
equation. If the Earth is spherically symmetric, then only spheroidal tidal components 
enter into the Poisson equation and produce a change in gravity and, because of the absence 
of lateral inhomogeneities and dilatational changes, toroidal oscillations do not perturb the 
gravity. In the elliptic liquid core, however, there are lateral variations in density, and 
toroidal amplitudes enter into the Poisson equation with the ellipticity as a factor. Thus, 
the toroidal oscillations can also produce the perturbations in geopotential and in gravity 
if they are sufficiently large and if there are marked lateral inhomogeneities in the structure 
of the Earth. 

Computation of tides in the mantle and in the liquid core are essentially two different prob- 
lems. In the mantle, tides are basically static, and only spheroidal tidal oscillations are easily 
observable. By comparison, the toroidal tidal oscillations in the mantle are small and are 
usually neglected. In the liquid core, the rigidity vanishes or is very small. As a result, the 
rotation of the Earth (Reference 19) and the ellipticity of equipotential surfaces induce 
toroidal tidal oscillations, as well as numerous couplings. 

The differential equations given in this work contain the effects of the Coriolis force, of 
the ellipticity of equipotential surfaces, and of the couplings between the toroidal and 
,spheroidal tidal oscillations, as well as the influence of the possible departure of the outer 
core from the neutral stability. 

I t  is of interest to determine the perturbative influence of viscosity of the liquid core on 
tides and on amplitudes of nutation. However, this influence cannot be easily estimated. 
Information on the viscosity in the outer core is incomplete, and the estimates of the kine- 
matic viscosity coefficient, Y, vary in a large interval. At the present time, the building of 
tidal models for different values of v can only be attempted. 

RECURSIVE FORMULAS FOR ASSOCIATED LEGENDRE FUNCTIONS AND 
THEIR DERIVATIVES 

This section contains some recursive relations between the associated Legendre functions 
and their derivatives. These relations are used in performing the expansion of tidal oscilla- 
tions and tidal forces into a series in vectorial harmonics. 

Beginning with 

n - m + l  n + m  

2n + 1 PE1 (XI xPF(x) = p,"+l (4 + 
2n + 1 
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the following is derived: 

(n - m t l)(n - m t 2) 

(2n t 1)(2n t 3) 
x2 P," (x) = p:+2 (4 

(n t m - l ) ( n  +- m) 
(2n - 1)(2n t 1) t PE2 (4 

and 

From 

= t  

t 

3 

2 
- 

3 

2 

(n - m t l ) ( n  - m + 2) 

(2n + 1)(2n + 3) 
- .  

n2 - 3m2 t n 

(2n - 1)(2n t 3) p," (4 

(n t m - l ) ( n  t m) 
(2n - 1)(2n t 1) PZ2 (4 

(n - m t 1) (n - m +. 2) 

(2n t 1)(2n t 3) 
(1 - x2) Pn" (x) = - Pf.2 (4 

2n2 t 2m2 t 2n - 2 

(2n - 1)(2n + 3) 

(n t m - l ) ( n  + m) 
(2n t 1)(2n - 1) 

t pn" (4 

- PE2 (4 

d Pm (x) 

dx 
(1 - x2) = (n i- 1) x P," (XI - (n - m t 1) P,"+~ (x) 

(3) 

(4) 

( 5 )  
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and, taking equation 1 into account, 

(n + 1)(n + m) 
2n + 1 

+ PE1 (4 

Equations 1,2, and 5 yield: 

n2 - 3m2 t n 

(2n - 1)(2n + 3) 
+ p," (x) 

(n + 1)(n + m)(n + m - 1) 
(2x1 + 1)(2n - 1) 

+ -  PE2 (4 

From the normalization conditions, 

PF (X)P?(X) dx = 'y, 
l + l  

where 

2 (n t m)! 
2n + 1 (n - m)! 

- C Y n -  - 0  

and a,,, are Kronecker's deltas, and, taking equation 1 into consideration, 
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6 (yn-l v,n-l  
n + m  
2n + 1 

+ 

Substituting 

A = P," (x), B = P," (x) 

into the identity, 

dA dB d 

d x d x  dx 
- 2(1  - x2> - - + 2 - (xAB) 

and taking into account 

m2 
(1 - x2) dPv" J t [.@ + 1) - -1 P," (x) = 0 

dx dx 1 - x2  

yields: 
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Multiplying equation 12 by x and integrating by parts yields: 

and, taking equation 10 into account, 

m2 
+ - Pn" (X)PF (x)] dx dPy" (4 

dx dx 1 - x2 

n(n  - m + 1)(n + 2) 
2n + 1 

6 &n+l v,n+l 
- - 

From equation 12, taking equation 8 into account, 

= n(n + 1 ) ( ~ ~ 6 ~ ~  
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From !equations 6 and 8, it follows that 

(n - 1)(n - m) - 2n - 1 'v,n-1 

SPH ERl CAL VECTOR I A L  HARMON ICs 

In this work, the tidal oscillations and the tidal forces are expanded into a series in vectorial 
harmonics (References 3 ,7 ,8 ,20 ,  and 21): 

cr(f3,(p> = - r x v s: 

where 

er = i sin 8 cos cp + j sin 8 sin cp + k COS 8 

ee = + i cos 0 cos cp t j cos 8 sin cp - k sin f3 

e = - isincp + jcoscp 
9 
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- - - (19) er X ee - eq, ee X e9 - er, a9 X or - ee 

and 

a i a  1 a 
+ ep r s i n 8  ap 
- -  V = e  - + e e - -  

ar r 38 

In the frame of the present (linearized) theory, there is no mutual influence between vectorial 
harmonics of different orders. For this reason, the index m in the exposition will be omitted 
in all cases in which ambiguity does not arise. 

From equations 15 through 17, taking into account 

yields 

v = + 2 i '  sn 

= + r-l C, 

= + 2 i 2  (B, - A ~ )  

v x 

vv 

V X V X An = + n(n + l)r-?A, 

v2 A, = + 2 i 2  B, - (n2 + n + 2) i2 A, 

v B~ = - n(n + 1) i1 S, 

v x B, = - r-l cn 

VV Bn = + n(n + 1) f 2  (A, - Bn) 

v x v x B, = - n (n + 1) i2 A, 

V2 B, = + n (n + 1) i2 (2A, - B,) 
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V - C , = O  

V X Cn = r-l [n(n + l ) A n  + B,] 

vv c, = 0 

v x V x C, = + r-'n(n + l )Cn 

v2 C, = - i2 n(n + l )cn 

Making use of 

k = + er cos 0 - eo sin 0 

the following is derived from equations 15 through 17: 

k An X A:, = 0 

k A, X Bit  = - im P," (x) Pm (x) 

d P,". (x) 
ax 

k A, X Ci, = + (1 - x2) p," (XI 

(38) 

(3 9) 

k B, X A:, = - im P," (x) P,", (x) (41) 

d 

dx 
k B, X B:, = + imx - [p: (x) PT (x)] 

(46) 
d 

dx 
k Cn X Ci, = + imx  - (P: (x)P? (x)] 
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The asterisks designate complex conjugates. The use of equations 38 through 46 facilitates 
the expansion of the Coriolis force into a series of vectorial harmonics. In performing the 
expansions of tides and tidal forces into a series of vectorial harmonics, the inner product 
is used: 

-1  

where F and G must be of the same order. The dot designates the standard scalar product. 
From equations 13b and 15 through 17, the following normalization and orthogonality 
conditions are derived: 

(Bn, B,,,) = (Cn, Cn,) = n (n t 1) an 6,,, (49) 

and from equations 38 through 46,8,  10, and 12 through 14, the following relations are 
derived: 

(k X An,A,,r) = 0 

(n t 2)(n t m t 1) 
(k X An,Cnr) = t 2n t 3 'n',n+ 1 

(n - 1) (n - m) 
2n - 1 

- an'n,, n-1 

(k X Bn, A,,,) P - iman 6" 

(k X Bn, Bnr) P - h a n  6m, 

11 
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n(n - m t l)(n t 2) 
(k X Bn, Cn,) = - 2n t 1 S + 1  'n',n+l 

(n t 1)(n t m) 
(k X Cn,An,) F - 2n t 1 4 - 1  'n',n-1 

n ( n , -  m t 1) 

2n t 1 t a n + l  'n',n+l 

n(n  - m t l ) ( n  t 2) 

2n + 1 
(k X Cn, Bn,) = t &n+1 5 n',n+l 

(n t m)(n2 - 1) 
t 2n t 1 an-1 'n',n:l 

(k X Cn, Cn,) = - iman  tim, 

which are useful in the process of expanding the geostrophic force. 

The expansion of a vector, F, in terms of spherical vectorial harmonics has the form 

where all vectors are of the same order. On several occasions, the series on the right-hand 
side is finite, and it will be simply a finite linear combination of vectorial harmonics. In 
particular, taking equations 5 1 through 59 into account, 

im n t m  

n - m t l  

(n t 1)(2n t 1) t 'n+l 

12 
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im 
n(n + 1) 6" 

k X 6, = - "An - 

(n + 1)(n + m) 
n(2n + 1) 

n(n - m + 1) 
(n + 1) (2n + 1) 

- 
'n-1 - 

(n + l ) (n  + m) 
2n + 1 

n(n - m + 1) 
k X  C,=- An-1 + 2n + 1 An+ 1 

(63) 
n(n - m + 1) im 

c* 
(n + l ) (n + m) + 

n(2n + 1) 'n-1 + (n + 1)(2n + 1) - n(n + 1) 

DIFFERENTIAL EQUATIONS OF TIDAL OSCILLATIONS 

Let v be the volume of a portion of the Earth in the "initial" state. Assume that in v and on 
its boundary surface, a, the density and elastic parameters are continuous functions of the 
position vector, r. 

Let dv be the element of v, and let da be the oriented surface element of a. At the moment, 
t, under the influence of tidal forces, these quantities become V, A, P, R, dV, and dA, respec- 
tively. Assume that the tidal displacement 

u = R - r  

is small and that all quantities of the second order in u can be neglected. From 

1 
dA = - 2 dR A dR 

aR aR aR aR aR aR (64) 
aY az az ax ax aY 

x -  dy dz + - x -  d z d x +  - x -  dx dY - -  - 

and 

1 
2 

da = - drAdr  = idydz  + jdzdx + kdxdy  (65) 
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the following is derived: 

aA = aa A 

where the dyadic A has the form: 

a R  a R  a R  a R  a R  a R  
A = i -  X - t j -  x -  t k -  x -  

aY az az ax ax aY 

Substituting 

R = r + u  

into equation 67 and taking the identities, 

I X i = k j - j k, I X j = i k - k i, I X k = j i - i j 

into account, then neglecting the terms of the second order in u, 

A = I - (I X V) X U  

Taking 

(I x V) x u = uv - I V  * u 

and 

u v =  E t  I x 0 

into consideration, 

A =  (1  t e11 - E - I x 0 (69) 

Under the influence of vorticity, the prestress, S, will receive at the moment, t, the increment 
(Reference 5 )  

w x s - s x w  

and the total-stress tensor becomes: 

T = T + S t O . X  S - S X O  

14 



where7 is the stress induced by lunisolar tidal forces. Let U (R) be the force function of 
self-gravitation (with centrifugal effects excluded), and let W be the tidal-force function. Let 
4 be the change in. the gravitational-force function as caused by a small redistribution of 
matter in the Earth’s interior under the influence of tidal forces. 

In this case, the principle of D’Alembert takes the form: 

d A * T = O  
V /;V[U(R) t $1 - w i P d V  t J A 

where 

a2 R aR da 

at2 a t  dt 
w =  - + 2 a x  - t -  X R + X (a X R )  

is the absolute acceleration, and $2 is the instantaneous speed of rotation. The gradients are 
taken relative to R. Taking 

P d V  = pdv 

and equation 66 into account, equation 71 becomes: 

/ b ( v U ( r )  + u VVU(r) + V $  - w] dv t s da A Q T = 0 (73) 
V a 

in which the terms of higher order are neglected. By applying Gauss’ theorem to equation 
73, the differential equation of tidal oscillations takes the form: 

pw = p ( V U +  v$t u VVU) + V (A T) (74) 

which contains the influence of the deviatory prestress. From equations 69 and 70, 

A T = ~ + ( i  + e)s - s x W -  e s (75) 

15 



and 

v (A T) = v T +  (1 + e )  v s - (V e - v e l  s 

- (S * V )  x 0 -  (V S) x 0 - E 0-vs 

or taking into account 

v . E = ve - v x  o 

so that 

v (A T) = v -  T +  (1 + e)v s + ( J X  v s 

+ (V  X u )  s - (S V) x 0 - e . *  v s  

equation 74 becomes: 

p w  = p v ~  + $1 + p u  vvu + v .  T +  (1 + e ) v  s 

Note the existence of a coupling between the prestress and the vorticity. This coupling 
disappears if the prestress is reduced to hydrostatic pressure. Thus 

52 = a 0 ( k  + N) (77) 

where St, is a constant and St, N are the perturbations in the speed of rotation. Our primary 
interest is in diurnal and semidiurnal tides. Then .no N represents the nutation, astronomical 
and free. The typical term in N can be written in the form: 

N = E(icosat - isinat)  

thus, 

k * N = O  

16 



.... ._ _. .., 

In the system rotating with the Earth, the astronomical nutation is represented by a trigono- 
metrical series with the same arguments as in diurnal Earth tides (Reference 10). 

Substituting 

aR au 

at a t  
- = -  

into equation 72 and making use of equation 77 yields: 

aZu au dN 
w =  - + 2Q0 k X - - Q 0 r X  - 

at2 at dt 

- v [@o - a', (r X k) (N X r)] - u VVd, 

where 

1 

2 
4, = -  r * ( I  - kk) ' r  (80) 

is the centrifugal-force function. Assuming the static equilibrium in the "initial" state, 

v s + p v v  = 0 (81) 

where 

V = U + d 0  (82) 

is the total gravitational force function. Using equations 78 and 8 1 , differential equation 
76 of tidal oscillations becomes: 

dN r N k r) + V 7 + p Q0 r X - 
dt 

+ p V  ($ - 

+ (V x 0) s - ( S  V) x 0 - E vs 

17 



In the liquid core, the relation between the stress and strain tensors is assumed to be either 
Hooke’s law, 

7 = x e l e  + 2pe E = h e r e  + pe(uv + vu) 

or, more generally, the Kelvin-Voigt law, 

T = A I e  + 2pe = x I e  + p(Uv + VU) 

where 

a a 
X = X e + X  - > P  = Pe + y - 

v a t  a t  

For the oscillations of a given frequency, u, 

X = X e  - iaAv,p = pe - i a y  (87) 

Generally speaking, A,, p,, A,, and pv are functions of r. The values of A, and peare supplied 
by Earth’s models. Knowledge of the viscosity of the liquid core is incomplete (Reference 
22). Estimates of the kinematic viscosity coefficient of the liquid core vary between loe7 m2s-’ 
and lo3 m2s-l (References 21 and 23). In its main characteristics, the motion in the interior 
of the liquid core follows the laws of classical hydrodynamics (Reference 2 1) .  For this reason 
and to obtain at least preliminary information on the influence of the viscosity on the tidal 
oscillations, the numerical integration can be performed under the Stokesian approximation: 

2 

P P 3 
V a - !LV - 

where v is a constant. 

Equation 83 is the basic. Any other equation of tidal oscillations that appears in the present 
exposition is either a consequence or a paraphrase of equation 83. Of special interest are 
transformations that bring equation 83 closer to  a form associated with the hydrostatic 
equilibrium. For example, making use of the identity, 

u vvv = w x vv + V ( u  vv) - E vv 

yields: 
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+ p V($ + u VV - r N k r) 

dN 

dt 
+ p Q o r X  - - ( P E  vv + E VS) 

+ (V x 0') s - ( S  - V )  x 0 

or, taking the identity, 

(88 continued) 

- p e v v  + p v  (u VV) = - v ( ~ U ) V V  + V ( P U  V V )  

- u x (VP x V V )  

into account yields: 

t 2a0 k X %)= at V 7 - V  ( p u ) v V  

+ p V ( $  - C2:r N k  r) t V @ u  VV) - u X (Vp X V V )  

dN 
+ p a o r X  - dt - ( p E * V V + E ' * V S ) + ( V X O ) ' S - ( S . V ) X  w 

Considerable simplification can be achieved if the prestress is reduced to  hydrostatic pressure, 

then, 

s = - P I  

p V V  - V p  = 0 

and, as a consequence, 

V p X V V = Q  v p  X V V  = 0 

i.e., in the initial state, the equipotential surfaces-the surfaces of equal pressure and equal 
density-coincide. It is assumed that, in the initial state, the equipotential surfaces also 
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coincide with the surfaces of equal compressibility and rigidity. As a consequence of the 
hydrostatic hypothesis, 

p e a  v v  + e v s  = 0 

(V x w) s - (S .* V) x '0 = 0 

and equations 88 and 89 become, respectively, 

a2u  a u  

at2 at P 
- + 2 a 0 k X  - = -  V 0 r - e ~ ~  

dN 
+-V(J /  + u V V  - 52; r N k r) + a0 r X - 

dt 

+ 2flO k X %) = V r - v (pu)vV 
at 

dN - 
dt 

+ V @ u  V V )  + p V ( $  - air N k  r) + p a o r  X 

Equation 91 represents a generalization, with the effects of nutation and geostrophic force 
added, of the equation used by Alterman et al. (Reference 7) for computing free oscillations 
of the nonrotating spherically symmetric Earth. Equation 90 can serve as the foundation of 
the Molodensky theory of tides (Reference 3). Equation 90 is transformed here to a different 
shape, more comparable to the classical Molodensky equation. As previously stated, because 
of hydrostatic equilibrium, the equipotential surfaces-the surfaces of equal pressure and of 
equal density-coincide. It was also assumed that the surfaces of equal X and p remain coin- 
cident with the equipotential surfaces. Consequently, 

vv,vp = - vv A' Lo v x =  - vv,vp  = - 
g g g 

where A', p', and p' ai-e the derivatives in the direction of gravity V V, and g = I V V I. Using 
equations 92 and 85 and after some easy transformations: 
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P' 
+ - [gu' + (Vu) V V ]  

gP 
(93 continued) 

By substituting equation 93 into equation 90, the Molodensky equation (Reference 3) is 
obtained: 

au XB a2 u 

at2 at P 
= V ( $  + u V V  + - - C&tr  N k  r) - + 2G0 k X - 

[gut -f (V u) VV] 
' P  Pt - p t 9 V V  + - ( V 2 u  + A $ )  + - 

P w 
dN 
dt 

+ a 0 r X  - 

where 

(94) 

is the core stability parameter (Reference 17). If the viscosity in the liquid core is neglected, 
equation 94 becomes: 

a2u au X6 

at2 at P 
+ 2 n 0 k  X - = V ( $  + u V V  +- - A?,tr N k  r) 

dN - 
dt 

- p O V V  + a O r  X 

Finally, if the liquid core is in neutral equilibrium (Le., the Adams-Williamson relation, 
0 = 0, is satisfied (Reference 16)), the equation takes a very simple form: 

5 1 Z r * N k - r )  
aZu au A6 

at2 at P 
- + 2 C & 0 k X - = V ( $ + ~ * V V + - -  

dN +ao rX -  
dt 

.. .. .- 

(97) 

21 

. . . _ .  



If only one nutational term is selected, complete identity with Molodensky can be achieved 
(except for notations): 

N = E (icosat - jsinat) (98) 

From equation 98, 

dN - -  - - U k X N  (99) dt 

and, after some easy vectorial transformation, 

dN 

dt 
- V  (ai r * N k * r ) t 5 2 0 r X - = - V [ S ? , o ( S Z o  - a ) r * N k * r ]  -2!i-20ukr-N (100) 

Then, for example, tidal equations 90,9 I , and 94 become, respectively: 

t V @ u * V V )  t p v [ $  - S?,o(sZo - a ) r * N k * r ]  

- 2 a 0 u k r = N  

and 

1 - 
P 

a2u au 

at2 at 
t 2 Q 0 k X - =  V 

cc cc' - oevv + -  (v2,, t v e) t- (vu) . V V ]  
P gP 

- 2a0  u k r N. 
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TRANSFORMATION OF NUTATIONAL TERM 

From 

N = E(+ icosu t  - j s i n u t )  

er 
k 

= +isinOcoscp + jsinesincp + kcose 

= + er cos e - eg 'sin e 

and taking 

into consideration, 

1 

6 + e-iuf s;' r N k r = + - & r 2  Si' 

and, taking equations 15 and 16 into account, 

The following is obtained in a similar manner: 

k N * r  = E T  ( ers inecose  - ee sin28)cos(at + cp) 

and, taking equation 105 into account, 

1 1 

6 6 
er sin e cos e cos (at + cp) = -- e+iut A:' + - e-iot A-' 2 

Making use of equation 60 and equation 8, 

I 
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Substituting equations 109 and 1 10 into 108, 

The following representations of the nutational term is obtained from equations 107 and 
1 1 1 :  

-ao (ao - 0) V ( r -  N k r) - 2a0 u k N  r 

1 1 
6 2 
1 1 
6 2 

a: A;' + -  ~1: B:' -- ia0uc:'  = + E r  

1 + - a: A;' + - a: B;' + - i SZ~U'C;' 

By introducing the tesseral-force function: 

which arises from the variation of latitude, the nutational term can be written in the form: 

1 

2 
-ao (ao - a) v ( r -  N k *  r) - 2a0 (T k N  r = V n i  + -i c r a 0  a ( C i l  e+iof + C;e-'&) (114) 

Thus, the nutation, forced or free, modifies the lunisolar tidal potential and initiates the 
toroidal oscillations. For the astronomical nutation, the force function, IIi , is similar in 
form to the corresponding term in the lunisolar tidal-force function. It is possible to fuse 
both force functions together. As a result, small terms added to  W would be expected to 
modify the coefficients of the Earth's tidal elastic response slightly. Eachlparticular frequency 
has its own unique Love and Shida numbers. 
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EXPANSION OF THE CORIOLIS FORCE 

In this section, the Coriolis force is expanded into spheroidal and toroidal components. In 
the mantle, the tidal oscillations are predominantly spheroidal. In the liquid core, however, 
the Coriolis force and the ellipticity produce both toroidal and spheroidal tides and the 
numerous couplings between spheroidal and toroidal tidal constituents. 

By assuming that the tidal oscillations can be expanded into a sum of terms of the form: 

and by taking equations 61 through 63 into account, the following is obtained for the 
typical term in the expansion of the Coriolis force: 

(n + 1) (n + m) aTn . -  au  
at 

2Q0 k X - = 2Q0 at An-l 

(n + 1) (n + m) aTn n + m  

'n-1 - n(2n+ 1) 
.- + i  

n(2n+ 1) at  

- i m -  avn An - n(n+  im 1) ( 2 + 2 ) B n  
a t  

'Tn n ( n - m + l )  aTn m - - _ _ _  
Cn + i a t  at 2n+ 1 + 

n (n t 1) 

Under the influence of the Earth's rotation, the spheroidal (toroidal) oscillations produce 
toroidal (spheroidal) terms in the expansion of the Coriolis force. There is also a mutual 
influence between the tides of the (n - nth , and (n + l)th degrees. 

Substituting first n + 1, then n - 1, for n in equation 1 16 and retaining only the terms of 
the nth degree, 

au (n - 1) (n - m) q-, avn  - m- .- 
2Q0k X - =  at 2 Q 0 { i [ +  2n- 1 at  a t  
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( n + 2 ) ( n + m +  1) - "1 An (1 17 continued) 
2n+ 3 at  

(n + 2) (n + m + 1) 

(2n + 3) (n + 1) 
+ . "3 at B, 

n - m  sun-, (n - 1) (n - m) avn-l m aTn .-- .- +-.- 
n(2n-  1) at n (2n - 1) at n ( n +  1) at + [+ 

- .- avn+l] cn I n + m +  1 sun+ 1 ( n + 2 ) ( n + m +  1) .-- 
(n + 1) (2n t 3) a t  (n t 1) (2n+ 3) a t  

This equation shows the manner in which the tides of the nfh degree are being influenced 
by the tides of (n - 
18, 24, and 25). There is no coupling, however, between the tides of different orders. In 
particular, for oscillations of the first degree and order, 

and (n + degrees through the Coriolis force (References 6, 

1 aut av: 9 aT; 
+ i  _ - - - - -  + - - ) B i  

( 2 a t  2 a t  i o  at 

1 aT; 3 aut 9 

2 at i o  at  i o  at 
+ (+--- - _ -  - 

For diurnal tides of the second degree, 
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1 aT: 1 au; 1 av; 16 aT; 

6 a t  6 a t  6 at  21 at 
+ - - - - - - - -  +--) B; (1 19 continued) 

1 

+ - - - - -  1 au: 1 av: + - - - - - - - -  1 aT; 4 au; 16 avi) ciJ 
6 at 6 at 6 a t  21 at 21 at  + (  

For diurnal tides of the third degree, 

a u  4 aT; av; 25 aT,: 

at  s at at 9 at  
2 n o k  X. - = 2nO{i  (+-- - - - -  - 

4 aT; 1 au; 1 av; 25 aT; 

15 at 12 at 12 at  36 at 
- - -  + - -) Bt 

2 au; 4 av; 1 a-r; 
15 at 15 at  12 at 36 at  36 at  

5 au; 25 av;)ct} + -  - -  -- - - - + - - - - -  

For the most important semidiurnal effects, 

au; av; 20 a ~ ;  
+ i (-- 3 at - - -  3 at  +--) 21 at  B'z 

3 at 21 at 21 at  

and for n = 3, m = 2, 

( 152) 
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8 ~ ;  au; av; +L5) B; (1 22 continued) 
15 at 6 at 6 at 6 at 

The influence of free nutation on semidiurnal tides is considerably smaller than on diurnal 
tides. In the liquid core, the Coriolis force produces numerous couplings between the semi- 
diurnal tides of different degrees. 

If tides of a given frequency u only are of interest, then by replacing 

Um by e+iut Um, Vm by e+iut Vm , etc. 

in equation 118 we obtain 

- (n t 2) (n t m t 1) 
2n t 3 - Tn+1 

(n-  l ) (n -m)  m m 
Tn-l - - un - n ( n t 1 )  vn n (2n - 1) n ( n t  1) 

(n t 2) (n t m t 1) 

(2n t 3) (n + 1) t Tn + J Bn 

n - m  (n - 1) (n - m) m 
Un-1 - n (2n - 1) 'n-1 ' n ( n t  1) Tn n (2n - 1) 

- i  [t 

n t m t l  (n t 2) (n t m + 1) 
(n t 1) (2n t 3) 

- Vn + 11 .) 
(n t 1) (2n t 3) Un+l - 

In particular, for diurnal and semidiurnal tides up to the third degree, as a paraphrase of 
equations 1 18 through 122, 
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2 i f10ak  X u = - 2C10a[ (- V i  - - 9 T:) A; 

5 ( 124) 

+ ( -  $u;  - - 1 Vi + - 9 Ti) B; - i ( + - T :  1 - - 3 U: - 2- vi) c;] 
2 10 2 10 10 

16 
2if10a k X u = - 2C10a [(+ f Ti  - V: - - 

7 

1 1 1 16 
+ (+ - T i  6 - -U: 6 - - V i  6 + - 21 Tt) B: (125) 

1 1 1 4 16 - i (+ - u; - - vi + - Tk - - ui - - v:) c;] 
6 6 6 21 21 

T i  ) A: 
9 

2iC10a k X u = - 2C10a 

+ (+ - T ; -  4 - U : - - V i +  1 1 -Ti).; 25 

15 12 12 36 (1 26) 

- i t  E u : -  2 4 V i  + - 1 T i  - - 5 U i  - - 25 Vi)C:\  
12 36 36 

2 iQ0a  k X u = - 2nou 
20 

1 20 + ( :  - - u ; - - q + -  3 
21 T:) Bf 
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10 

3 
2ia0a k X u = - 2a0a T: - 2V: - - Ti)  A: 

+ (+ - 2 Ti  - - U i  1 - -Vi 1 + -T.:) 5 B i  

15 6 6 6 

- i  (+ - 1 us - -vi 2 + - T i  1 - - U i  1 - - 5 
15 15 6 6 6 

INFLUENCE OF ELLIPTICITY OF EQUIPOTENTIAL SURFACES 

In the frame of the present theory, it is assumed that the interior equipotential surfaces are 
ellipsoids: 

1 2 
3 

r [1 + - €(a) P, (cos e)  = a 

1 (129) 3 
P, (COS e )  = - COS, e - - 

2 2 

where a is the ellipsoid’s mean radius, and e is its ellipticity. In the expansions only the first 
power of e is retained. By assuming that U (r) is the force function of self-gravitation associ- 
ated with a properly selected (or assumed) spherical model of the Earth, the following is 
obtained (Reference 6) for the potential of the ellipsoidal model with the centrifugal part 
included : 

1 v = ~ ( r )  + - 3 at r2 - c P, (cos e)  (130) 

where 

2 1 
c = + - r €(I) g(r) + - 

3 3 
r2 

dU 
g = -  
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From equation 130, for the undisturbed force of self-gravitation, 

where 

2 
3 

y = g - - ~ 2 r  (1 33) 

In the further exposition, it is assumed that the stability parameter, p, with sufficient accu- 
racy can be considered either a constant (the case of the uniform stability) or a function of 
r. Taking into account 

where 

yields : 

en = v u, = xn s, 

2 n ( n +  1) 
Vn x, = - 

dr r r 

where 

From equation 3, 

3 ( n - m +  1 ) ( n - m + 2 )  
2 

er Sn P, (x) = + - 
(2n + 1) (2n + 3) An+ 2 

(135) 

(138) 
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n2 -3m2 + n  

(2n - 1) (2n + 3) - An + (1 38 continued) 

3 ( n + m -  1)(n+m) 
2 (2n - 1) (2n + 1) An-2 

+ - - .  

From equations 16, 17, and 7, and taking the normalization conditions into account, 

( n - m +  l ) ( n - m + 2 )  
(n + 2) (2n + 3) (2n + 1) '''n+2 

+ 

and 

and, making use of equation 60, the following expansion is obtained: 

( n + m -  l ) (n+m) n2 -3m2 + n  
Bn On = - + 

(n - 1) (2n - 1) (2n + 1) Bn-2 n (n + 1) (2n - 1) (2n + 3) 

( n - m +  l ) ( n - m + 2 )  im(n+m) 
(141) ~. __ ~ + 

(n + 2) (2n + 3) (2n + 1) Bn+2 + (n - 1) n (2n + 1) ''-1 

i m ( n - m +  1) + 
(n + 1) (n + 2) (2n + 1) 'n+l 

By substituting equations 138 and 141 into equation 136, 
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3 ( n + m - l ) ( n + m )  
- P e n V V  = PXnyAn + 2 (2n- 1)(2n+ 1) An-2 

n 2 - 3 m 2 + n  3 ( n - m + l ) ( n - m + 2 )  + A n + - *  
(2n - 1) (2n + 3) 2 (2n + 1) (2n + 3) 

(n-m + 1) (n - m + 2) + 
(n + 2) (2n + 3) (2n + 1) Bn+2 

im(n+m) i m ( n - m +  1) 
+ (n - 1) n (2n + 1) 'n-1 + (n + 1) (n + 2) (2n + 1) c n + J  xn 

By substituting n - 2, n - 1, n, n + 1, n + 2 for n in equation 142 and by retaining only the 
terms of the nth degree, 

-0evv  = + PXn.yAn 

(n - m - 1) (n - m) + O T r  dc [+ 
xn-2 (2n-3)(2n- 1) 

n 2 - 3 m 2 + n  
+ xn (2n - 1) (2n + 3) 

1 An 

3 ( n + m +  1 ) ( n + m + 2 )  

+ Xn+z (2n + 3) (2n + 5) 

(n - m - 1) (n - m) 
+ xn-2 n (2n - 1) (2n - 3) 

+pz [ 
r 

(143) 
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1 ( n + m t l ) ( n t m t 2 )  
- 'n+z (n + 1) (2n + 3) (2n t 5) Bn 

+ i p  - 
I 

n - m  

n (n+  1)(2n- 1) 

(143 continued) 

-3 cn n + m t l  

n ( n t  1)(2n+3) 

In particular, for diurnal and semidiurnal tides up to  the third degree, 

n =  l , m =  1, 

1 9 c  
- -  3pc (t - xi t - Xi) B: + 7 X i  C: r 10 35 

n = 2,m = 1 

10 

dr 21 
- pevv = + pyx ;  A: t p t - xi) A i  

(145) 

2 

7 
C 1 20 

r 63 r 
t o -  (t 14 xt - - xt) B i  

n = 3,m = 1 

n = 2,m = 2 
(147) 

5 

dr 7 
- p 8 V V  = t BrX?,A; + 0 - X i  + - X i )  A i  

10 c 5  
- 0 -  + - x ; + -  xi) B i  + i p  - - x2 c2 

r " (  ; 21 I 7 3 2  
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n = 3 ,m = 2 

+ i P  - t -x; t -x i )  1 " (  I 1; 3 c; 

Because the spheriodal terms in equation 149 as produced by the ellipticity are extremely 
small, only the toroidal perturbative part might be significant. 

From equations 1 15 and 132, and taking equations 15 through 17 into consideration, 

By taking equations 1, 2, and 7 into account, some easy transformations yield: 

Vn = - run sn 

- u, + (n + 1) - vn sn-z 
3c I 1 ( n + m -  l ) ( n t m )  

(2n - 1) (2n t 1) 

3c m(n+m) 
r zn 1 Tn 'n-1 

- - .  

3c 
r 

- u, t - v,) s, 
n2 - 3m2 + n 

(2n - 1) (2n t 3) 

3c , m ( n - m t l )  
r 2 n t  1 Tn Sn+l - - .  

( n - m t  1)(n - m +  2) 3 dc 3c - t - - un - 7 nv,) s"+z (2n t 1) (2n t 3) ( 2 dr 
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Replacing n in equation 1 5 1 by n + 2, n + 1,  n, n - 1 ,  n - 2, and keeping only &e essential 
terms (i.e., the terms of the degree n) yields: 

7)  = u v v  = - runsn 

3 ( n + m + l ) ( n + m + 2 )  

2 (2n + 3) (2n + 5 )  'n+2 

n2-3m2 + n  

(2n - 1) (2n + 3)  Un + 

3 ( n - m -  1)(n-m) 
+ -  2 (2n - 3) (2n - 1) u n - 2 1  

(n+ m + 1) (n+ m +  2) (n + 3) 
r (2n +- 3) (2n + 5) Vn+2 

m ( n + m + l )  
2n+ 3 T n + l  + 

n2 - 3m2 + n 
vn (2n - 1) (2n + 3) 

+ 

m (n -m) 
+ 2n-  1 Tn-l 

- ( n - m -  l ) (n-m)(n-2)  Vn-J .1  s n  
(2n - 3) (2n - 1) 

In particular, for diurnal and semidiurnal tides up to the third degree, 

forn = l , m  = 1 ,  

18 1 
35 5 
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C 144 9 3 

+ - r (t V i  + -Ti  5 - - 5 Vi)] Si 

for n = 2, m = 1, 

1 = - r u ' s l  - [+ ; (t 10 u; + -ut)  1 

7 772 2 2  

(+ - 100 vi + - 12 T i  + - V i  3 + Ti)] Si r 21 7 7 
+ -  

for n = 3, m =  1, 

(1 53 continued) 

C 60 5 3 6 2 + - ( + -  r 1 1  vs + - 3 T; + - 5 V i  + - T i  5 - -Vi) ]  5 S: 

and for n = 2, m = 2, 

= - TU2 s2 - [; (+ - 5 u; - -u;) 2 

7 7 2 2  

50 30 6 + 2 (+ - V; + - Ti - - Vi)] si 
I 7 7 7 

(154) 

Let A, p, and p be the values of the elastic parameters and density for an ellipsoidal model 
of the Earth, and let A, , p,, and p, be their values for the corresponding spherical model. 
If the viscosity of the core is neglected, then A,, po , and p, are functions of r. With the 
viscosity considered, they become the differential operators with respect to time: 
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where 

From equations 157, 134, and 135, 

[p": I h 

P 
- 0  = - + SP, (x) xn sn 

where 

( 1 5 7 continued) 

Taking equation 3 into consideration, 

( n - m +  1 ) ( n - m + 2 )  
~- 

Sn+2 (2n + 1) (2n + 3) 

A A0 - 0 = -  
P P O  

2 n 2 - 3 m 2 + n  (n + m - 1) (n + m) 

3 (2n - 1) (2n + 3) 
+ -  

sn + (2n - 1) (2n + 1) Sn-21. x n  

Replacing n in the last equation by n - 2, n, n + 2 and keeping only the terms of the nfh 
degree, 

(161) 
Xn+2 Sn 1 ( n + m + I ) ( n + m + 2 )  

(2n + 3) (2n + 5) 
2 n 2 - 3 m 2 + n  ~~ xn + t -  
3 (2112 1) (2n+ 3) 
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In particular, from equation 161 for diumal and semidiumal tides up to the third degree, 

n =  l , m =  1 ,  

n = 2 , m =  1, 
2 20 (163) 

xis; + s (+ - xf + -  .:) sf h A0 - =- 

P P O  
21 63 

( 164) n = 3 , m =  1, 

2 2 

15 15 33 
- 6 = -  h0 x;s; + s (. - xi + -  x; + - 
x 
P P O  

n = 2, m = 2, 

10 (- ,4 21 
x A0 - e = -  x2s2 + s - xi + - x:) si 

2 2  
P P O  

n = 3 , m =  2, - 

SCALAR FORM OF DIFFERENTIAL EQUATIONS OF TIDAL OSCILLATIONS 

Substituting the expansions given in the three previous sections into the differential equation 
of tidal oscillations (e.g., into equation 103) and settingp = 0 for the liquid core, for the 
general core of tidal oscillations of degree n: 

- -  - I  
2n+ 3 at I 

3 ( n - m -  1)(n-m) 
= +p’yxn + p Xn-2 
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n2 - 3m2 + n 3 ( n + m +  l ) ( n + m + 2 )  (167 

(2n - 1) (2n +3) xn ' 7  (2n+3)(2n+5) . xn+2 ar continued) + ] +5 

P V n  + 2 a 0  i [- m (: + 2) 
at2 n ( n +  1) 

(n - 1) (n - m) aTn-, (n + 2) (n + m + 1) aT,+, + + 
n(2n-  1) at (2x1 + 3) (n + 1) at  

( n - m -  l ) (n -m)  n2 -3m2 + n  
n(2n- 1) (2n- 3) xm2 + n ( n +  1>(2n- 1)(2n+3) Xn = ++[+ r 

( n + m +  1 ) ( n + m + 2 )  1 - 
(n + 1) (2n + 3) (2n + 5) 

where 

3 ( n - m -  1)(n-m) 
F =I,$ - T U  

(2n- 3)(2n-- 1) un-2 

n2 - 3m2 + n 3 ( n + m +  l ) ( n + m + 2 )  
+ un +- un+ .] (2n - 1) (2n + 3) 2 (2n + 3) (2n + 5) 

( n - m -  l ) (n -m) (n -2 )  n 2 - 3 m 2 + n  
Vn-2 + (2n - 1) (2n + 3) Vn r (2n - 3) (2n - 1) 

(n i. m + 1) (n + m + 2) (n + 3) + 
(2n + 3) (2n + 5) 

3c m(n-m)  m ( n + m +  1) 
- - r [+ 2n-  1 Tn-1 + 2 n + 3  Tn+ J 
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I 

( n - m -  l)(n-m) 

(2n - 3) (2n - 1) 'n-2 

( n + m +  l ) ( n + m + 2 )  

[ A0 

P O  

+ - X n + s  + 

, 2  n 2 - 3 m 2 + n  + -I ' 

Xn + (2n + 3) (2n + 5) xn+J 3 (2n - 1) (2n + 3) 

(1 69 continued) 

The nutational term 

must be added to the right-hand side of equation 169 for n = 2, m = 1, 

n -  m aUn-, (n- 1)(n- m) aVn-, 
- -  

at2 n(2n-  1) at  n(2n- 1) a t  

n + m +  1. aUn+ 1 (n + 2) (n + m + 1) aVn+, m - 
(170) + - -  

(n + 1) (2n + 3) a t  (n + 1) (2n + 3) at n (n + 1) at  

The nutational term, 

1 

2 
+ - r a0 ue+iot 

must be added to the right-hand side of equation 170 if n = 1. If interest is in tides of a 
given frequency only, taking equation 123 into account yields: 

(n- 1)(n-m) - u 2 U n  - 2 n 0 u  + Tn-1 -mVn [ 2 n - 1  

(n i- 2) (n + m + 1) 
2n+ 3 Tn+ J 

dc [+- 3 (n -m-1)  (n-m) 
dr 2 (2n- 3)(2n- 1) 'n-2 

= + / 3 r X n + P -  



n2 - 3m2 t n 3 ( n t m t l ) ( n t m t 2 )  
+ (2n - 1) (2n t 3) 'n 7 ( 2 n t 3 ) ( 2 n t . 5 )  ~ xn+J  

( 1 7 1 continued) 

+- 

- u2Vn - 2  n 0 u  n ( n +  1) (Un VJ 

(n - 1) (n - m) (n t 2) (n t m t 1) 
t n (2n - 1) Tn-1 t (2n t 3) (n + 1) Tn+ 3 

( n + m +  1 ) ( n t m + 2 )  1 

(n t 1) (2n + 3) (2n t 5) + r F n  

n - m  (n- 1)(n-m) 
- u2Tn t 2 n o u  [. n (2n - 1) ull-1 - n (2n - 1) Vn-1 

3c n - m  n t m t l  
= o - m [ t  r n (n t 1) (2n - 1) 'n-1 n (n t 1)(2n t 3) x n +  J 

Equations 167 through 173 show that there is a strong mutual interaction between U,, Vn , 
T,-l, and Tn+l. The corresponding differential equations constitute a separate group. 
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Besides U,, V,, Tn-l , and T,, , some other terms enter into these differential equations, 
but they represent the effects of higher order. 

For example, for diurnal tides, 

1 aT: av; 16 aT; 

3 at  at 7 at 

a2 ut 

at2 

a2v; 1 aT; 1 au: 1 av; 
+ 2 Q  i 

atz O \ 6 at 6 at 6 at  21 at / 

= + O L ( + -  1 X i  - - X i )  20 +-F: 1 
r 14 63 r 

2 au; 4 av: 1 a ~ ;  5 au: 25 av; 

15 at 15 at 12 at  36 a t  36 a t  - -) (177) 
- - 2 a o i  _ - -  + - - - -  - -  
a2  T t  

at2 

= +fl+ C 1 x; + -  5 
r 10 36 
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- - ( T ; + ? V ; + - T : + -  C 3 12 100 
r 7 21 

(1 78 continued) 
20 

x; +-xi) 63 + "; 
where 

and 

a F; +-xi +-x; 1 +-x:) 5 +r 
= + p r x ; + P F  d c (  5 

11 

4 aT;  1 aU;  1 aV; 25 a T i  
- + 2 Q 0 i  -- - - - - - - +--) 

15 at 12 at 12 at 36 at 

azv; 

at2 

+- 1 xi -- 5 X i )  +-F: 1 
r 20 22 r 

= + p -  C (+:xi 1 t-x;) 2 
r 7 
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-- 
( 182) 

1 aT: 3 au; 9 av: 6 au: 36 av: 

2 0  at 28 at  28 at 55 at 55 at 

3 3 

a2Ti 

at2 

= +p-  3c (+ - x; + - x;) 
I 140 110 

- 1 u; + - 1 u; + - u t )  5 

C 2 3 60 Vt + - 6 T: + - 5 T i )  

5 5 1 1  

r 5 11 5 3 

2 
15 33 

and, equations 121 and 122, 147 and 148 yield for main semidiurnal tides, 

- + 2n0i 
a2u; 

at2 7 at 

2 5 a FZ 
7 7 ar 

dc (- - x; + - xi) + - = + P Y X ;  + P , r  

a2v; 1 au; 1 av; 20 aT; 

at2 3 at 21 at  
+ 2 Q 0 i  (-; at--- + -  -) 

C 1 10 1 
I 7 21 I 

= -0- (+-xi +- Xi) +- Fi 
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x; +- xi 
21 lo ) + -  A0 X i  + s (.z 4 

P O  

If only terms of a given diurnal or semidiumal frequency, u , are of interest, then replacing 

Un by Un e+iut, V,, by Vne+iat, etc. 

in equations 174 through 187 yields: 

dc 1 10 dF 
= +pyx; + p d r  (+T x; +-  xi) +-  dr 

21 
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9 c  1 (1 90 continued) 
= + -  PYX: +-&noor 

10 2 

1 4 8 

6 15 15 
(- u2 +- SZ0 u) T: + no u (+ - U: - - Vi)  

5 

36 

50 
9 

- u'U: + n 0 a  T: + -  T i  + 2V: 

= + p 7 x ;  + 0: (+-xi 1 +-  1 xi + -  5 x:) +- d F$ 
5 5 11  dr 

25 1 
18 6 

T i  - -  T i  + -  U;) 

2 1 5 
20 22 r 

1 8 32 
3 21 21 (194) 

(+$ u; - -  v; - - u; -- vi) 

= +pc (.- 1 x; + -  2 
7 r 6  

= + - 9 pc (+- 1 x: + -  1 

1 1  10 r 14 
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and, for the main semidiumal tide: 

5 

dr 

T$ +- 2 U:) 
3 

v; + QofJ 
(197) 

10 

21 r 

3 

The lunisolar tides, Ui , Vi,  do not exist, and it appears that the influence of tides U: , V i ,  
U: , V i ,  Ui , and V i  in equations 188 through 198 is negligible. Of course, this assumption 
requires a full confirmation by numerical integration, but at least it can be used at the 
beginning of the computational process. Differential equations 188 through 198 are then 
split into three separate groups that can be solved independently. 

TRANSFORMATION OF THE POISSON EQUATION 

The tidal forces cause a small redistribution of matter inside the Earth. This results in a 
small increment $ of the interior geopotential that satisfies the Poisson equation: 

By assuming the expansion, 

dJ = q s , "  
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equation 199 can be reduced to  an equivalent set of ordinary differential equations for $: 
that must be solved with the corresponding set (equations 167, 168, and 170) for the tidal 
displacements and I):. 
By substituting 

and 

(1 16) u = Un An + V, Bn + i Tn Cn 

into V (p u) and by taking equations 15 through 18 into account, some easy vectorial 
transformations result in: 

r 

e+imlp 
dx 

4 
r 

+ 3 -  VnX(1 -x2) - 

By taking equations 1, 3, and 7 into account, the foregoing equation becomes: 
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(20 1 continued) + n 2 - 3 m 2 + n  - (4 un + qxn + 3 - v n )  9 sn (2n- 1) (2n t 3) r 

m ( n - m +  1) q 
2n+ 1 r + 3  - Tn 'n i l  

3 ( n - m +  1 ) (n -m+2)  

2 r 
+ - - .  

(2n + 1) (2n + 3) 

In equation 201 replacing n by n + 2, n + 1 n - 2, and keeping only the terms of the n" 
degree yields: 

1 3 ( n + m + 2 ) ( n + m + l )  9 
Uni2 + 9xn+2 + 2 (n+3)  - Vn+2 

r 
+ - - '  

2 (2n + 5) (2n t 3) 

r n ( n t m +  1) q 

2 n + 3  r - Tni l  + 3.- 

Un + qxn + 3- 
r 

+- 

un-2 + 9 x, - 2 (n - 2) r 
3 ( n - m - l ) ( n - m )  

2 
+ - - .  

(2n - 3)  (2n - 1) 

Substituting equations 201 and 202 into equation 199 yields the differential equations 
satisfied by $:: 
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(2 un + q x n  + 
r 

r n ( n + m +  1) q 

- Tn+l + (2n - 1) (2n + 3) 2 n + 3  r 

n2 - 3m2 + n 
+ 3 .  

(203 continued) 

3 ( n - m - l ) ( n - m )  

2 
+ -  

(2n - 3) (2n - 1) 

If the ellipticity of equipotential surfaces is neglected, the standard equation for a spherical 
model is: 

d2$, 2 d$, n ( n +  1) 
- + - - -  $n = +44: un + ..x.) (204) 

dr2 r dr r2 

Some interesting conclusions can be derived from equations 203 and 204. It is clear that, 
if the Earth is assumed to be spherically symmetric and originally in hydrostatic equilibrium, 
then toroidal oscillations do not produce any change in the geopotential. This is a well- 
known fact, confirmed by the gravimetric observations on the surface of the Earth. In the 
mantle, the influence of the ellipticity of equipotential surfaces on the oscillations is very 
small, and the tides are predominantly spheroidal. The introduction of Love and Shida 
parameters as functions of r takes care of these two facts in the mantle. 

However, in the liquid core, the ellipticity and the dependence of the density on the latitude 
(i.e., the lateral inhomogeneity) cause the toroidal terms to be present in equation 203, and 
the toroidal oscillations do influence the variations of the geopotential if they are sufficiently 
large. In general, with the introduction of lateral inhomogeneities into the Earth’s model, 
their influence on the tidal oscillations can be expected to increase. 

For the main diurnal tides, the equation for the variation of geopotential becomes: 
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T: 
12 9 dq U; + qx; + 3 -  9 vt) +- 9 T: + -- +-(- 
7 r  r 7 d r  r 

- (205 continued) 

+A u; + qx; + 10- r v;)J 10 dq 

If the influence of Ut and Vt is neglected, then equations 205 and 188 through 19 1 consti- 
tute a separate system to  be solved for Ui ,  V i ,  Ti , Ti ,  and $:. 

For the main semidiumal tides, equation 203 becomes: 

d2$i  2 d$i  6 

dr2 r dr r2 
+- --- $22 = +4aG [(: U i  + p, Xi) 

t 2(.9 u; + qx; + 10- 
7 dr r 

Neglecting the influence of U: and V$ results in a complete system consisting of equations 
206 and 196 through 198 to  be solved for tides U$, V$, and T: and for $;. 

GENERALIZATION OF SOME MOLODENSKY EQUATIONS IN THE 
RESONANCE THEORY 

The close proximity of the period of the diurnal wobble of the liquid core to the sidereal 
day produces a resonance effect that influences the amplitudes of nutation and the value 
of the diurnal Love number. 

Molodensky and Kramer (Reference 3) have developed the theory of the resonance effect, 
assuming the neutral equilibrium of the liquid core and the validity of the Adams-Williamson 
condition (Reference 16). 

Several works recently appeared (References 13, 17, and 18) that consider the dynamical 
consequences of the departure of the liquid core from the neutral stability. In this section 
the Molodensky and Kramer (Reference 3)  theory is extended and the model of the liquid 
core is considered, which departs from the neutral stability and, thus, does not satisfy the 
condition of Adams-Williamson (Reference 16). The theory is of the first order (i.e., the 
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influence of the ellipticity on the spheroidal tidal oscillations can be neglected), but the 
eccentricity shall be retained as a factor multiplying large toroidal oscillations and, in partic- 
ular, in the boundary conditions on the core-mantle interface. 

Molodensky and Gamer differential equations (Reference 3) are amended by perturbative 
terms proportional to the Pekeris and Accad index of stability of the outer core (Reference 
17). 

If Q - no , then the toroidal oscillation, Ti , becomes large and, because of the small factor, 
no - u, equation 190 is no longer suitable for determining tidal amplitudes. Equations 188 
through 19 1 must be replaced by a different combination of equations. Multiplying 
equation 190 by -1/3 and adding the result to  equation 189 yields: 

1 1 
+ - ~ ( o - 2 S 2 ~ ) r T ~  + - ~ Q ~ u r ~  = F, + CP 

3 6 

where 

14 8 32 
21 Q o o T 3  - - 15 no ou, + ( 0 2  - - 15 no o )  v, r-1 @ = +- 

8 c  20 c - =P;X2 --p-x, 
63 r 

Equation 188 can now be rewritten in the form: 

2 d F2 - - Q o o T 1  + \k =- 
3 dr 

where 

10 
9 = -02u, + a 0 o  T, + 2 V 2 ) - 8 ? x ,  - 

For brevity and because the ambiguity does not arise, the superscripts and the factor, Si  , are 
omitted in the exposition. 
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Eliminating F, from equation 209 by means of equation 207 yields: 

a 
( ~ ( o  - 2 Go) (r T,) + 2 Qo (T T, + E Go ur = 3 

In this case, the following estimates of orders of magnitude are obtained: 

and, from equation 190, 

and, from equation 135, 

Qo-U C 
e - -  , tzg - S Z : ~  -- a0 r 

Go -u 

520 

u,, v,, T, - - T, - € T I  

Tl x, - e -  
r 

Consequently, 

These estimates show that the terms on the right-hand side of equation 21 1 are less significant 
than the terms on the left-hand side. Furthermore, the form of equation 21 1 suggests the 
estimate, 

a 

-7- 
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where Q is a large constant (Molodensky and Kramer resonant parameter (Reference 3) ) .  
From equation 2 1 1 ,  

E QO 

Qo-O 
a!"- 

Setting 

Q o - 0  

QO 

a! 2v = E -- 

and keeping only the essential terms in equation 154 yields: 

and the estimate 

From equation 178 the following can be derived with the same accuracy as that given 
previously : 

h 

P 
F = $, + n ,  + rl, +- x, 2 

and, from equation 190 
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and taking into account equations 21 6 and 21 8, 

1 5 1 C 

x2 3 9 2 w,m 
v, = _ -  U, - - - V I  - -  p- 

It follows from equations 212 and 214 that the last term on the right-hand side of equation 
223 is of the order of E T, , and it must be retained if the influence of the departure of the 
core from the neutral stability is considered. 

From equations 135 and 223. 

1 d  10 

4 d r  3 r 

In agreement with Molodensky and Kramer (Reference 3), setting 

F 2 = G Z  + II 2 - K  

yields from equation 22 1, 

and, substituting 

into equation 226, 
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Eliminating U, and X, from equation 223 yields: 

Combining equations 228 and 2 19 yields: 

dP 1 dp c 
dr r 1  

(1 - p ) p  x, + - u, =- -  dr (K ---T I 

and, from this equation and equations 219, 224, and 228, 

r4 dp c 
- -vvpr4 3 +- - (K - - T ~ )  r 

g dr 

d pr4 10 
- dr [y (77, + :TI)] r 

which is one of two basic Molodensky equations (in a slightly modified form) with the 
influence of the departure of the liquid core from the neutral stability included. 

Approximation 

1 
T = - a r  

l 2  

can be subtituted into equation 230. 

Neglecting the terms of the order e U, - e2 T, in equation 205 yields: 

- d2G2 +-- 2 d$, - -I), 6 = +4rG ($U2 + pX,  +-Tl) 9 
&2 r dr r2 r 
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Substituting equation 219 into equation 231 for U, and into equation 228 for X,, some 
simple transformations result in: 

+ - - - - - - 2 = + - -  
- d2--2 2 d # 2  6 

&2 r dr r2 

and, eliminating $, in favor of K by means of equation 225 yields: 

+ (r+-- d2F2 2 dF2 -- 6 F.) 
I dr r2 (233) 

in which the approximation, TI = a! r/2, can be used. To simplify equation 233, it is more 
convenient to introduce the new variable: 

1 
3 

Q = K - - C L z  IT, 

rather than K so that 

(234) 

. 
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From equations 207 and 2 18, 

1 
3 2 

F, - 10 [ ( C J  - 2S10) rT, + - 

From equations 2 12, 220, 22 1 , and 228, 

Q -  K - egT1 - WirT, 

and, consequently, 

EQ d2F2 2 dF2 6 - + - - - -  
&2 r dr r2 r2 

F, -- 

and it can be neglected. Then, 

d2Q 2 dQ 4nG dp 6 -- 
dr2  r dr ( g  d r . 1 2 ) '  

or, in a slightly different form, 

4nG dp - d [.. (f2Q)] -7 
dr dr 

r4 Q (237) 

If the departure from the neutral stability is neglected, equations 236 and 237 become 
corresponding Molodensky equations. 

Equations 219, 228 through 230, 234, and 236 constitute a complete system for the res- 
onance case. I t  can be integrated only numerically. Solutions must be determined so as 
to satisfy the conditions on the boundary between the inner and outer cores and between 
the outer core and the mantle. 

59 



I 

Because E satisfies Clairaut equation 

d2e 8nGp  de 877 Gp 

dr2 r2 
- 

it can be shown that c satisfies the differential equation: 

r4 dp 1 r4 dp 

s g  dr 
c +  - -  - Q t r 2  = O  

1 d  
4nG - - dr (.. 3 dr 2 - - g d r  - 

From equations 237 and 239, 

and combining equations 240 and 230 yields: 

(Q - - c&) 
2 

1 r6 d 1 

2 4nC dr r2 
- c a )  + - - - 

(239) 

10 r4 dp P 
3 g dr 1 - P  

- - - p r 4  = - - 

which represents a generalization of Molodensky and Kramer equation 37 (Reference 3) to  
the case in which the liquid core deviates from the neutral stability. Integrating equation 
241 over the liquid core gives the extension of equation 39 of Molodensky and Kramer: 

b P r4 1 r6 d 1 1 [T (v2 + - ca) + - - - (Q - - c a q  

= zv 3 J p r 4 d r +  p go; . - ($ t l)(v2 t K)dr 

2 4nG dr r2 2 c  

r4 dp P (242) 

C C 
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Equation 242 connects the resonance parameter, the ellipticity, and the index of stability 
with the boundary conditions. Euler’s equation for the angular momentum supplies an 
additional connection between the amplitude of nutation and the change in the tensor in 
inertia of the whole Earth, as produced by the small redistribution of mass (Reference 4). 
These two equations, together with the boundary conditions, constitute a complete set for 
determining necessary parameters of the theory, once the model of the Earth is given. 

CONCLUSIONS 

The present work provides the possibility of including the influence of the ellipticity and 
of the Coriolis force into the computations of tides in the Earth’s interior. I t  also deals with 
the mutual effects between the toroidal and spheroidal tides of different degrees. The 
Molodensky theory of resonance between the diurnal wobble and the diurnal astronomical 
tides of the liquid core is amended by including the possible deviation of the liquid core 
from the state of neutral stability. 

Plans for future work include the transformation of the boundary conditions and the con- 
struction of a model of tides in the outer core of the Earth. 

This model shall be tested against the variation of latitudes and positions of the pole and 
against the values of parameters of the Earth’s tidal elastic response (Love numbers) on the 
surface of the Earth. The analysis of the variation of latitudes and search for resonant fre- 
quencies was performed recently by Popov and Yatskiv (Reference 26) and Debarbat 
(References 27 and 28). It shall be repeated, making use of the observations of variation 
of latitudes and pole positions by modern technology such as laser ranging (Reference 1 1 ) 
and VLBI (Reference 29). The VLBI observations can also provide the values of Love 
number at each station and thus help to determine the inhomogeneities of the Earth’s tidal 
elastic response (Reference 29). 

Goddard Space Flight Center 
National Aeronautics and Space Administration 

Greenbelt, Maryland March 1978 
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